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Purpose
Study the transport properties in stochastic magnetic systems where magnetic
field lines deviate from their unperturbed stationary orbits. For this particular
example, Hamiltonian dynamics as well as statistical mechanics foundations
are used to investigate the trajectories and paths of ′braided′ perturbed
magnetic field lines in a plasma, that are chaotic and random.

1 Introduction and Basic classical mechanics con-
cepts

In order to describe the dynamics of any Hamiltonian system, one can use
the Hamiltonian function H(p, q), where p and q are the system momentum
and position in the phase space respectively [4]. When this Hamiltonian is
time independent (dH/dt = 0), the energy of the system is conserved and
E(p, q) is said to be a constant of motion. Note that:

dp

dt
= −∂H

∂q

and
dq

dt
=
∂H

∂p

When using the appropriate generating function S(p̄, q, t), a canonical
change of variables from (p, q) −→ (p̄, q̄) can be performed, while preserving
the Hamiltonian form. In terms of S(p̄, q, t), the change of variables is
specified as:

q̄ =
∂S

∂p̄

p =
∂S

∂q

and p and q are said to be canonically conjugate. This change of variables
preserves the Hamiltonian form and is performed to make the study of the
system dynamics easier.
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If we have an integrable system, that is a system with a time independent
Hamiltonian (dH/dt = 0) and global constants of motion that are indepen-
dent of each other, we can perform a canonical change of variables from
(p, q) −→ (J, θ) where θ is the angle variable and J is the action variable
defined as J =

∮
p.dq. Note that both j and θ are multicomponent variables

so it makes sense to write the equation in vector notation. This change of
variables gives:

d~θ

dt
=
∂H

∂ ~J
= ~w( ~J)

where ~w( ~J) is the angular velocity. The new Hamiltonian is now only ~J
dependent, H = H( ~J), and the action variable is conserved along certain
unperturbed orbits: d ~J/dt = ∂H/∂~θ = 0.

In a 2-torus periodic cylinder system such as a tokamak, orbits with
rational angular velocity ratio w1/w2 = p/q are closed unperturbed surfaces,
along which particle resonance can occur. However, if this ratio p/q is
irrational, trajectories are open and particles follow ergodic paths that tend
to fill the whole torus space.

Figure 1: Rational surface in a 2-torus tokamak.

In the more general perspective, a canonical change of variable comes in
handy when investigating the perturbation effects on the system dynamics
using the KAM theorem. When we perturb the Hamiltonian H0( ~J) by adding
a small quantity εH1( ~J, ~θ) with ε small, we should expect the particles orbits
defined by the appropriate constants of motion and the corresponding closed
rational surfaces w1/w2 = p/q to be destroyed as soon as ε 6= 0. Our
purpose is to try to recover the new closed orbits set that corresponds to
the perturbed Hamiltonian H( ~J, ~θ) = H0( ~J) + εH1( ~J, ~θ) using the KAM
theorem results. If these closed new orbits exist, there must be a way to do
a canonical change of variables so to express this same Hamiltonian H( ~J, ~θ)
in terms of some new constant of motion ~J ′; we are basically saying that
H( ~J, ~θ) = H(~J ′) for a canonical change of variable ( ~J, ~θ) −→ (~J ′, ~θ′). The
generating function S allowing such a change of variables is expressed in terms
of ~J ′ and ~θ. We furthermore expand the generating function S = S0 + εS1
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and the Hamiltonian H1 expressions as Fourier series and write them as:

S1 =
∑
m

S1,m(~J ′)exp(i~m.~θ)

H1 =
∑
m

H1,m(~J ′)exp(i~m.~θ)

where ~m is a vector of integers, we find that the new perturbed surfaces
approximate the unperturbed orbits of the integrable system. For such type
of orbit self preservation, the change in the generating function ∆S = S1

needs to be equal to:

∆S =
εH1(~J ′)

~m.~w

∆S is clearly not defined for ~m.~w = 0. Such a scenario referred to as the
small denominator problem is responsible of creating orbits resonance islands
where trajectories braid from one X point to the other. Around these islands,
orbits become less and less perturbed as they get further away from the O
point. If two or more islands are present close to each other, chaos fills in
the separating volume by non-ergodic turbulent mixing. This happens when

∆ ~Jα + ∆ ~Jβ

‖ ~J0,α − ~J0,β ‖
> 1

One can use Quasi linear or the Fokker-Planck theory to describe the particles
behavior in those regions, shown to be of diffusive nature [6, 7].

2 Magnetic field lines mixing

A prime example of the perturbed orbits and stochastic transport problem
is that of the magnetic field lines perturbation in tokamaks. Ideally, unper-
turbed ~B lines lie on nested sets of magnetic flux surfaces and act to keep
charged particles confined in certain regions inside the torus. Unfortunately,
unavoidable symmetry breaking leads to magnetic field line perturbation.
Magnetic field irregularities result in significant changes in the magnetic
topology, lead to the birth of magnetic islands or even regions with destroyed
magnetic surfaces, particularly near the separatrix, and one finds himself
facing the perturbed/unperturbed orbits problem mentioned above. Elec-
tron thermal conductivity appearing to be sensitive to this effect, it would
be insightful to look at the change of transport proprieties in a stochastic
magnetic field line configuration.

In Ref. [7], the authors used Vlasov equation to study deviations of field
lines from their unperturbed resonant surfaces and to investigate the system
response to the adjacent resonant perturbations overlapping on top of each
other. The authors tried to qualitatively describe the type of random motion
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according to which the chaotic magnetic field takes over and fills in the space.
The perturbed magnetic field is:

~B = B̃rr̂ + (Bθ(r) + B̃θ)θ̂ +B0ẑ (1)

The equation of magnetic fields (∇. ~B = 0) generates then:

dr

B̃r
=
dz

Bz
=

rdθ

Bθ(r) + B̃θ
(2)

and the Liouville equation ~B.∇f = 0 gives:

∂f

∂θ
+
rBr
Bθ

.
∂f

∂r
+
rBz
Bθ

.
∂f

∂z
= 0 (3)

where f is the probability distribution function of orbits in (r, θ, z).

Side Note: Kubo number and some of its proprieties
Before going deeper in the discussion, it is worth mentioning that cases
where the Kubo number (defined as the ratio of radial excursion from the
unperturbed case to the radial correlation length: Ku = δr/∆r) is small
are of particular interest. This low Ku number limit forces us to consider
only small perturbations for the time being. From Eq.(2), the transverse
excursion is dr = dz.(B̃r/B0) and:

δr = lac.(B̃r/B0) (4)

where lac = ∆|k‖|−1 is the inverse spatial bandwidth of the parallel perturba-
tion spectrum. Alternatively, if we consider the ratio of linear to nonlinear
terms in Eq.(2), this ratio boils down to:

lac
∆r

.
B̃r
B0

which in fact is the Kubo number.

• Ku < 1: It is a chaotic quasi linear diffusive transport case.
The weakly scattered particles experience multiple kicks in
a single radial scattering step size δr. In this case, particles
easily lose their memory before completing the circumnaviga-
tion in a trough of one large scale perturbation wave, which
makes the linear theory applicable.

• Ku > 1: This is transport case where linear theory fails be-
cause of the strong scattering of the particles. In one kick,
particles cover a distance greater than δr. The fact that par-
ticles are trapped plays a major role in determining the non-
linear effects leading to percolation.
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• For Ku ∼ 1: This is the case that defines the mixing length in
fusion systems. It translates a balance between the eddy turn-
over time in a system and the turbulence auto correlation
time. Another way of interpreting a Ku = 1 value would
be to say that the particle lifetime limited by the nonlinear
effects of the perturbation is equal to the time particles take
to bounce back while traveling in the trough of a wavelength
perturbation. In this case, turbulent states are qualified as
stationary.

Going back to Eq.(4) in our problem, the authors in ref. [7] used Quasi
linear theory to show that in the case of perturbed magnetic field lines, the
random motion of these lines is diffusive. When resonance islands appear,
perturbations around them spread out. Of course those perturbations start
fading when they get further away from the islands. However, when adjacent
resonance surfaces overlap, magnetic flux lines diffuse from one resonant
structure to the other according to a Brownian motion which results in surface
flux distortion and chaos irreversible non ergodic mixing. The authors used
Liouville equation and quasi-linear theory to write:

∂ < f >

∂z
=

∂

∂r
[DM

∂ < f >

∂r
] (5)

Here the radial magnetic field B̃r and the magnetic diffusion coefficient DM

are:
B̃r =

∑
m,n

Bm,n(r)ei(mθ−nφ) =
∑
kz ,kθ

B̃ei(kθy−kzz) (6)

DM =
1

4
.lac. <

B̃r
Bθ

>=
1

4
.lac. < (

δB

B0
)2 > (7)

The average is an ensemble average and Eq.(7) is taken from ref.[8]. Eq.5
has the from of a diffusion equation and yields a mean radial diffusive flux
Γ(r) due to stochastic wandering of the lines.

Γ(r) = −DM
∂ < f >

∂r

In the k-space, the expression of this flux is:

Γ = −B̃r(‖)

∂ < f >

∂r
=

∑
k

|δB̃r(k)

B0
|2πδ(k‖) =< (

δBr
B0

)2 > lac

where
∑

k =
∑

m,n in the expression of B̃r. This means that a diffusion of
B lines along a distance z imposes a δr value written as:

< (δr)2 >= DM .z ∼ lac.(
B̃r
B

)2.z (8)
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(δr is the radial excursion from the unperturbed orbits or lines).

Looking back at equations (7) and (8), in order to find the diffusion
coefficient DM , expressions of B̃r and lac are needed (See Eq.7). This
requires an expression of δr (See Eq.8).

δr =

∫ l

0
(B̃r/B0)dz

This in turn begs the question: what is l really equal to? In our system we
have three scales of length;

• lac = the coherence or the memory line length for scattering fields,
related to the auto correlation time τac in 1D.

• lmfp = mean free path according to which one can have either a
collisional (lac < lmfp < lc) or a collisionless regime (lac < lmfp < lc).

• lc = magnetic field lines decorrelation length which is analogous to lac
and emerges from considering the decorrelation of trajectories from the
linear unperturbed ones due to field scattering.

While the first two are well defined, further investigation of lc is needed and
was indeed first initiated by G. I. Taylor, Kelvin and Dupree.
In cylindrical geometry, considering a deviation (δr, δθ) from the unperturbed
orbits occurs, and using the relation r.(dθ/dz) = (B̃r/B0), we have:

r.
dδθ

dz
= δr.

B′θ
B0

where the derivative results from Taylor expanding Bθ at a value δr. Setting
δy = rδθ:

< (δy)2 >=<

∫ z

0
(
B′θ
B0
.δr.dz′)2 >= (

B′θ
B0
.z)2. < (δr)2 >= (

B′θ
B0

)2.DM .z
3

because < (δr)2 >= DM .z. Now since k2
θ . < (δy)2.lc >∼ 1, we have:

lc ∼ (k2
θ .(
B′θ
B0

)2.DM )−1/3 = (
k2
θ .DM

L2
S

)−1/3 (9)

where LS is a gradient scale length of the magnetic field. When the ratio
lac/lc is less than one, Ku < 1 and the quasi linear approximation is valid.
Alternatively, in the opposite case where Ku > 1, one can still use the
∇. ~B = 0 equation, which allows to write ~B as a function Ψ:

∂x

∂z
=
∂Ψ

∂y
,
∂y

∂z
= −∂Ψ

∂x
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When z is replaced by the time t, the previous two equations can be thought
of as equations of motion. But regardless of this analogy, field lines go along
constant Ψ lines. The behavior of the Ψ = const lines for a random Ψ
function has been analyzed in the problem of current percolation in random
inhomogeneous solids [3].

3 Electron thermal conductivity

What we want is to calculate the electron thermal conductivity in a chaotic
stochastic magnetic field lines configuration. In ref.[6], electrons motion and
spreading away from their unperturbed orbits is shown to be happening
according to a Brownian motion with a corresponding thermal diffusivity
equal to:

χr =
< (δr)2 >

2t

where < (δr)2 >= 2.L.DM = 2DM (χ‖t)
1/2 is the average squared radial

displacement traveled by the electron during a time t and described by the
diffusion equation. Here L is the distance in the z-direction. Clearly, to get
χ expression, we need to find < (δr)2 >. But before trying to determine
the values of < (δr)2 > and χ, one needs to distinguish between two cases
or regimes. This distinction is dictated by the corresponding length orderings:

Case 1: lac < lc < lmfp: the so called collisionless case

When calculating the particle heat diffusion coefficient, one needs to consider
diffusion in both parallel and perpendicular directions. Simply put, without
any perpendicular diffusion, particles will hit each other and then go back
to their initial position according to the same unperturbed orbit (lc < lmfp
means that the orbit remains unchanged and unperturbed within one collision
time) (Left picture in fig.2).

If this is correct (that is the absence of any sort of perpendicular scatter-
ing), particles would remain on the same orbit and experience only parallel
collisions that kick them back and forth. Clearly this is not the case because
such a scenario would mean a complete lack of radial transport. With nec-
essary perpendicular particle diffusion in mind, one can adopt some sort of
a perpendicular resolution, which although small, but not be equal to zero
(like a Finite Larmor Radius or electron gyro-radius for example), to find the
appropriate perpendicular diffusion coefficient that allows for the particles to
wander away and to be kicked off the unperturbed magnetic fields securing
this way a radial particle transport. This perpendicular coarse graining is
the source of irreversibility in the diffusion process.

As an example, let us consider a disk of radius ρe moving in the torus and
let us study its dynamics within a time t < τcollision . Because of the phase
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Figure 2: Particle trajectories without and with perpendicular diffusion.
Arrows represent particle directions of motion.

Figure 3: Time evolution of a disk of radius ρe.

space conservation, as time evolves from a −→ b −→ c, we see that within
one collision time (t < τcoll), this disk is distorted and starts stretching in
both parallel and perpendicular directions. The two new length scales are:
ρlong.direction = ρe.e

lmfp/lc and lshort.direction = ρe.e
−lmfp/lc respectively. At

t = τcoll, the coarse graining smears the disk to a larger scale length so to fill
a bigger surface.
The distance traveled within one collision time τ is lmfp = vth.τ where the
collisions are treated as a discrete process taking place periodically at constant
time intervals τ with no memories between the steps. Assuming there is no
memory between those time steps, the particle’s motion is random and the
span in the radial direction is < (δr)2 >∼ DM lmfp in one collision time τcoll.
The collisionless stochastic heat diffusion coefficient in the perpendicular
direction is then equal to:

χ⊥ =
< (δr)2

2τcoll
∼
DM .lmfp
τcoll

= DM .vth (10)

Clearly this coefficient is independent of collisionality and collision frequency
but requires coarse graining which is the essence of the irreversibility of the
process.

Case 2: lac < lmfp < lc: the so called collisional regime
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In this case, particles randomly undergo multiple kicks in the parallel direc-
tion within one lc. Parallel motion is diffusive and for a time t >> τ , the
average traveled distance L is equal to:

L2 ∼ χ‖.t ∼ vth.lmfp.t

where χ‖ = vth.lmfp. Radial spreading is then:

< (δr)2 >= 2.L.DM = 2.DM .(χ‖.t)
1/2

In the perpendicular direction, the motion is continuous and the course
graining is needed to kick the particles off the magnetic lines. The spreading
caused by particles backscattering occurs at a diffusion coefficient:

χ⊥ = ρ2
eνe = ρ2

e.(vth/lmfp)

The backscattering modifies the perpendicular traveled distance and the
radial displacement squared is now:

< (δr)2 >∼ DM .lc,δ

where lc,δ is now affected by all previous collisions the particle experienced.
Noting that (χ‖/l

2
c,δ ∼ 1/dt), we have:

< δr2 >

t
∼
χ‖

l2c,δ
.DM .lc,δ

which gives:

χ⊥ = DM .
χ‖

lc,δ
(11)

Obviously we need to find lc,δ. To do so we need to consider the competi-
tion between two processes which balance is what ultimately sets this lc,δ
length [6]. The first process is the decrease in the width experienced by the
disk in the previous picture. Stochastic instability makes the width decrease
exponentially (See fig.4):

dδ/dl = −δ/lc (12)

Here dl is the distance traveled by a particle during a time dt. The
second process occurs as a natural consequence of diffusive collisions and
results in a an increase in the width of this structure island by an amount
dδ ∼ (χ⊥.dt)

1/2 (See fig.5). But since 1/dt = χ‖/(dl)
2, we can write:

dδ ∼ (χ⊥/χ‖)
1/2.dl (13)
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Figure 4: Width decreases as a consequence of area conservation.

Figure 5: Width increase as a consequence of diffusion process.

Balancing Eq.(12) and Eq.(13), we get:

dδ ' (χ⊥/χ‖)
1/2dl ' (δ/lc)dl

The first proportionality is a direct translation of the smearing of the structure
island and the second proportionality translates a thinning process. The
delta expression is now equal to:

δ ∼ −lc(
χ⊥
χ‖

)1/2 (14)

In order to convert δ to lc,δ, we use k̄θ to translate the fact that if the disk
is squeezed in one direction, it should extend in another as a result of area
conservation. With k̄−1

θ ' δe
lc,δ/lc , this gives:

lc,δ = lc.log(
1

k̄θ.δ
) = lc.log(

(χ‖/χ⊥)1/2

k̄θ
.lc) (15)

and the χ⊥ expression is:

χ⊥ = DM .
χ‖

lc.log(
(χ‖/χ⊥)1/2

k̄θ
.lc)

= vth.DM .(lmfp/lc) (16)

Now comparing expressions of χ⊥ in the collisional and the collisionless
cases, we find that the thermal diffusivity in the latter case is smaller than that
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obtained for the collisionless case by a factor lmfp/lc,δ < 1 as one should have
anticipated. Long story short, collisions act to reduce the thermal diffusivity
in the perpendicular direction. These same collisions knock particles off the
filed lines and insure a radial transport.

4 An alternative route, an analytic approach

One might choose to adopt another route and try to recover the same
diffusivity properties and expressions in a more systematic way by adopting a
hydrodynamic perspective. Let us consider the heat flux along the perturbed
magnetic field lines and split its expression into parallel and perpendicular
to ~B components:

~q = −χ‖∇‖T b̂− χ⊥ ~∇⊥T

where χ‖ >> χ⊥. The unit vector b̂ is b̄ = ẑ0 + b̃ and represents both
the unperturbed and fluctuating parts. The corresponding operator ∇‖ =

∂z + b̃.∇⊥.
We start with a quasi linear approximation and allow for a temperature

perturbation: T = T0 + T̃ . For a stationary condition, the heat flux is
divergence free and ∇.~q = 0. Expanding the expression of the heat flux ~q
and < qr > while using the corresponding expressions of b̂ and ∇ we have:

~q = −χ‖(∂z + b̃∇⊥)(T0 + T̃ )(ẑ + b̃)

and

< qr >= −χ‖ < b̃r
2
> ∂r < T > −χ‖ < b̃r∂zT̃ > −χ‖ < b̃r b̃r∂rT̃ > −χ⊥∂r < T >

(17)
The first two terms are non linear quadratic and the third term is cubic
in perturbation. If we calculate the ratio of the third to the second term,
we find it equal to (b̃r.lac)/∆⊥ ( 1/∂z ∼ lac and 1/∂r ∼ ∆r). This ratio is
ultimately equal to the Ku number. Because we are interested in low Kubo
number cases, we will drop the third term cubic in the nonlinearity and
consider a radial flux expression < qr >:

< qr >= −χ‖[< b̃r
2
> ∂r < T > + < b̃r∂zT̃ >]− χ⊥∂r < T > (18)

which can be written as:

< qr >= −χ‖[< b̃r > ˜b.∇T >]− χ⊥∂r < T > (19)

For fluctuations to drive a nonlinear radial flux, b.∇T needs to be 6= 0 and
the temperature needs to vary along the field lines to drive parallel heat
flux. In the case of a stationary heat flux ∇.~q = 0 requires the results to be
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χ⊥ dependent. Now if we linearize the expression of ~q, we get the double
identity:

~q = −χ‖∂2
z T̃ − χ⊥∇2

⊥T̃ = −χ‖∂z b̃
∂ < T >

∂r
(20)

Working in the Fourier k-space:

T̃k =
ikz b̃kχ‖

χ‖k2
z + χ⊥k

2
⊥
.
∂ < T >

∂r
.

Plugging back in the nonlinear radial heat flux expression, we get:

< qNL >= −χ‖.
∂ < T >

∂r
.
∑
k

χ⊥k
2
⊥b

2
k

χ‖k
2
‖ + χ⊥k

2
⊥

(21)

with an explicit dependence on χ⊥, and:

< qr >= −∂ < T >

∂r

∫
dk⊥

∫
dkz

χ⊥k
2
⊥b

2
k

(χ⊥
χ‖
k2
⊥)(1 + k2

z

(χ⊥/χ‖)k2
⊥

)
(22)

The factor of the form 1 + α in the denominator of the previous expression
is simply the auto-correlation length lac, and when the integral is calculated,
we get:

< qr >= −∂ < T >

∂r

∫
dk⊥k

2
⊥

(χ‖χ⊥)1/2

k⊥
< b̃2k > lac (23)

< qr >= −∇ < T > .k⊥.(χ‖χ⊥)1/2. < b̃2k > .lac (24)

This translates into an effective perpendicular diffusivity:

χ⊥ = k⊥.(χ‖χ⊥)1/2. < b̃2k > .lac

But
√
χ‖χ⊥ '

√
v2
thρ

2
e ' DB, so this means that the effective electron

thermal diffusivity is:

χeff =
DB.DM

∆⊥

where χeff scales with Bohm and not Spitzer diffusion and ∆⊥ = k−1
⊥ .

Comparing the results to those in Eq. (11) and dropping the logarithm in

the expression of lc,δ, if we set ∆⊥ = lc
√

χ⊥
χ‖

as a result of adopting
χ‖
l2c

= χ⊥
∆2

⊥
,

we have

χeff =

√
χ‖χ⊥ < b̃2r > lac

lc(
χ⊥
χ‖

)1/2
=
χ‖DM

lc

and we recover the same results obtained in [6] where DM =< b̃2r > lac.
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